
MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
1-14, Yada-minami 5-chome, Higashi-ku, Nagoya 461-8670

Mitsubishi Electric FA Website e-learning Motion Control Software
SWM-G Basic Supplementary Document
[Title] Explanation of the sample program "03.Basic Motion"
[Document number] BCN-B11260-052EN
[Version] -
[Relevant Model] Motion Control Software SWM-G
This document is a supplementary document for the e-learning Motion Control Software SWM-G Basic course
which is available on the Mitsubishi Electric FA website.
The contents of this document are intended to supplement the above e-learning course. For information which
is not described in this document, refer to the e-learning course.
This document explains the sample program "03.Basic Motion" included in SWM-G.

Contents

Knowledge of C++ required for the control of SWM-G … 2

SWM-G basic program … 2

Description of program details … 3

Revision … 6

- 2 -

Knowledge of C++ required for the control of SWM-G
The following items are required for the control of SWM-G.

Item Function overview Use scene in SWM-G

Data pass by
reference

When pointer data is set to a function argument, the updated value
in the function is retained even after the function processing is
completed.

 When referring to monitor data
 When referring to parameter

 When referring to SWM-G monitor data

[How to reference]
 By executing the "GetStatus" API, the monitor information in the monitor data structure is updated to the latest

state.
 By making the argument an address reference format (pointer), the updated value can be retained after the API

processing is completed.

[Program example]
Define the data for status check (monitor).
CoreMotionStatus stMotionStatus; //Monitor data structure

//Obtain the current monitor information (Execute the API to obtain the monitor data).
ssclib_cm.GetStatus(&stMotionStatus);
//Set the start address of the monitor data structure to the argument. → The monitor data
structure is updated.

//Check the system status (Example: Display the communication cycle).
printf("Cycle Time Milliseconds = %d ¥n", stMotionStatus.cycleTimeMilliseconds);

//Check the axis monitor (Example: Display the command position and FB position of axis 0).
printf("Commnd Position = %f ¥n", stMotionStatus.axesStatus[0].posCmd);
printf("Actual Position = %f ¥n", stMotionStatus.axesStatus[0].actualPos);

SWM-G basic program
This section describes the basic program flow of SWM-G using the sample program "03_MotorControl.cpp" included in
SWM-G as an example.

Storage destination of the sample program "03_MotorControl.cpp"
C:¥Program Files¥MotionSoftware¥SWM-G¥Samples¥Cpp¥Src¥1_BasicMotion¥03_MotorControl¥03_MotorControl

 Basic program flow
The motion control program is configured based on the following flow.

Processing
order Description Processing status

1 Linkage of relevant files
Variable definition

Preparation processing 2 Device generation
 Generate SWM-G objects for each task.

3 Network connection
4 Servo ON

 Check the status.
Application processing 5 Home position return

 Perform the operation as necessary.
6 Various motion controls
7 Servo OFF
8 Network disconnection

End processing 9 Device closing
10 Memory allocation

Obtain the system/axis status.
(Update all monitor information
to the latest state)

Display the updated system
monitor.
(Example: Network status)

Display the updated axis
monitoring.
(Example: Command position FB
position)

- 3 -

Description of program details
This section describes the details of the sample program "03_MotorControl.cpp".

 Linkage of relevant files
/*********************/
/* Header */
/*********************/
#include "SSCApi.h"
#include "CoreMotionApi.h"
#include <stdio.h>

/*********************/
/* Name Space */
/*********************/
using namespace sscApi;
using namespace std;

 Variable definition
/*---------------------------------*/
/* Function : _tmain */
/* Description : Main Function. */
/*---------------------------------*/
int _tmain(int argc, _TCHAR* argv[])
{
 SSCApi sscLib;
 CoreMotionStatus CmStatus;
 CoreMotion sscLib_cm(&sscLib);

 Macro setting
In this project, the axis numbers and servo amplifier statuses are converted into macros.

/*******************/
/* Macro */
/*******************/
#define AXIS_0 0
#define AXIS_1 1
#define SERVO_OFF 0
#define SERVO_ON 1

Link with the file in which all APIs of SWM-G are defined.
< File for SWM-G >

Define the variable of the class (SSCApi) in which all APIs of SWM-G are
defined.

Define the axis number and servo status as a macro.

Link with the file in which the API for the basic motion controls is defined.
< File for SWM-G >

Link with the API file for basic I/O of the C++ language environment.
< Standard library file for C language >

Define this file as the location to use the API for basic I/O of the C language
environment.
(Specification of the name space)

Define this file as the location to use all APIs of SWM-G.
(Specification of the name space)

Define the variable of the class (CoreMotionStatus) in which the SWM-G status
is defined.

Define the variable of the class (CoreMotion) in which the basic motion
controls of SWM-G are defined.
 Set the start address of the target SSCApi class simultaneously.

- 4 -

 Device generation and network connection

printf("Program Start¥n");
 Sleep(1000)

 // Create devices.
 sscLib.CreateDevice("C:¥¥Program Files¥¥MotionSoftware¥¥SWM-G¥¥",
 DeviceType::DeviceTypeNormal,INFINITE);
 // Set Device Name.
 sscLib.SetDeviceName("MotorControl");

 // Start Communication.
 sscLib.StartCommunication(INFINITE);

 Servo ON
// Set servo on.
 sscLib_cm.axisControl->SetServoOn(AXIS_0, SERVO_ON);
 while (true)
 {
 sscLib_cm.GetStatus(&CmStatus);
 if (CmStatus.axesStatus[1].servoOn)
 {
 break;
 }

 Sleep(100);
 }

 Servo OFF
// Set servo off.
 sscLib_cm.axisControl->SetServoOn(AXIS_0, SERVO_OFF);
 while (true)
 {
 sscLib_cm.GetStatus(&CmStatus);
 if (!CmStatus.axesStatus[AXIS_0].servoOn)
 {
 break;
 }

 Sleep(100);
 }

 Home position return
// Homing.
Config::HomeParam homeParam;
sscLib_cm.config->GetHomeParam(AXIS_0, &homeParam);
homeParam.homeType = Config::HomeType::CurrentPos;
sscLib_cm.config->SetHomeParam(AXIS_0, &homeParam);
sscLib_cm.home->StartHome(AXIS_0);
sscLib_cm.motion->Wait(AXIS_0);

Function (printf) to output (Program Start) to the
console screen.

Axis 1 servo ON set

Variable definition

Wait for 1000 ms.

CreateDevice function
 To the first argument, pass the absolute path

of the directory including the SWM-G engine
file (SWM-GEngine.rtss).

Name the device "MotorControl".

Start the communication with the servo network.
 Argument INFINITE: Infinite loop
 When specifying the time until the

communication starts, set the time (unit: ms) in
the argument.

Wait for the transition to servo ON.
 The condition ends once servo ON is confirmed.

Wait for 100 ms.

Axis 0 servo OFF set

Wait for the transition to servo OFF.
 The condition ends once servo OFF is confirmed.

Wait for 100 ms.

Home type: CurrentPos
 A method in which the current feedback position

at the start of home position return is used as the
home position.

Read the home position return of axis 0.

Set the home position return parameter of axis 0.

Execute the home position return of axis 0.

Wait for completion.

- 5 -

 Various motion controls

//---
// Create a command value.
//---
Motion::PosCommand posCommand = Motion::PosCommand();
posCommand.profile.type = ProfileType::Trapezoidal;
posCommand.axis = AXIS_0;
posCommand.target = 1000000;
posCommand.profile.velocity = 100000;
posCommand.profile.acc = 1000000;
posCommand.profile.dec = 1000000;

//---
// Execute command to move from current position to specified position.
//---
sscLib_cm.motion->StartMov(&posCommand);

//---
// Wait until the axis moves to the target position and stops.
//---
sscLib_cm.motion->Wait(AXIS_0);

 Network disconnection
// Stop Communication.
 sscLib.StopCommunication(INFINITE);

 Device closing and memory allocation

//close device.
 sscLib.CloseDevice();
 printf("Program End¥n");

 Sleep(3000);
 return0;
 }

Define the variable of the data class for positioning operation.
 "= Motion::PosCommand()" initializes the internal data of

the class.

Stop the communication with the servo network.

Wait for 3000 ms.

Specify the acceleration/deceleration methods.
Trapezoidal: Trapezoidal curve
Corresponding axis: Axis 0

Movement amount (unit: pulse)

Speed (unit: rpm)

Acc: Acceleration, Dec: Deceleration (unit: U/s2)

Wait for the end of the motion.

Execute the motion.
StartMov: Relative position command,
StartPos: Absolute position command

Define the application processing statements.
 Required syntax < tmain to return >

A function (printf) to output (Program End)

Close the device.
 To stop the SWM-G engine, release the device by

calling the CloseDevice function.

Revision

Version Date Description

- August 2024 First edition

