MITSUBISHI
AN ELECTRIC

Mitsubishi Electric FA Website e-learning Motion Control Software
SWM-G Basic Supplementary Document

[Title] Explanation of the sample program "03.Basic Motion"
[Document number] BCN-B11260-052EN

[Version] -

[Relevant Model] Motion Control Software SWM-G

This document is a supplementary document for the e-learning Motion Control Software SWM-G Basic course
which is available on the Mitsubishi Electric FA website.
The contents of this document are intended to supplement the above e-learning course. For information which

is not described in this document, refer to the e-learning course.

This document explains the sample program "03.Basic Motion" included in SWM-G.

Contents
Knowledge of C++ required for the control of SWM-G 2
SWM-G basic program .2
Description of program details .. 3
Revision .. 6

MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
1-14, Yada-minami 5-chome, Higashi-ku, Nagoya 461-8670

Knowledge of C++ required for the control of SWM-G

The following items are required for the control of SWM-G.

Item Function overview

Use scene in SWM-G

When pointer data is set to a function argument, the updated value
in the function is retained even after the function processing is
completed.

Data pass by
reference

- When referring to monitor data
- When referring to parameter

® When referring to SWM-G monitor data

[How to reference]

- By executing the "GetStatus" API, the monitor information in the monitor data structure is updated to the latest

state.

- By making the argument an address reference format (pointer), the updated value can be retained after the API

processing is completed.

[Program example]

Define the data for status check (monitor).
CoreMotionStatus stMotionStatus; //Monitor data structure

//Obtain the current monitor information (Execute the API to obtain the monitor data).

Obtain the system/axis status.

ssclib_cm.GetStatus(&stMotionStatus), <
structure is updated.
//Check the system status (Example: Display the communication cycle).

printf("Cycle Time Milliseconds = %d ¥n", stMotionStatus.cycleTimeMilliseconds);

printf("Commnd Position = %f ¥n", stMotionStatus.axesStatus[0].posCmd);

//Set the start address of the monitor data structure to the argument. — The monitor data to the latest state)

(Update all monitor information

Display the updated system
monitor.

//Check the axis monitor (Example: Display the command position and FB position of axis 0). (Example: Network status)

printf("Actual Position = %f ¥n", stMotionStatus.axesStatus[0].actualPos); <

Display the updated axis

SWM-G basic program

monitoring.
(Example: Command position FB
position)

This section describes the basic program flow of SWM-G using the sample program "03_MotorControl.cpp"” included in

SWM-G as an example.

Storage destination of the sample program "03_MotorControl.cpp”

C:¥Program Files¥MotionSoftware¥SWM-G¥Samples¥Cpp¥Src¥1_BasicMotion¥03_MotorControl¥03_MotorControl

® Basic program flow

The motion control program is configured based on the following flow.

Processing .. .
Description Processing status
order

1 Linkage of relevant files
Variable definition

5 Device generation Preparation processing
- Generate SWM-G objects for each task.

3 Network connection

4 Servo ON
- Check the status.
Home position return N .

5 . Application processing
- Perform the operation as necessary.

6 Various motion controls

7 Servo OFF

8 Network disconnection

9 Device closing End processing

10 Memory allocation

Description of program details

® Linkage of relevant files

This section describes the details of the sample program "03_MotorControl.cpp”.

/*********************/

/* Header */

/*********************/

Link with the file in which all APIs of SWM-G are defined.

#include "SSCApi.h" <

#include "CoreMotionApi.h"
#include <stdio.h> <gm— |

< File for SWM-G >

Link with the file in which the API for the basic motion controls is defined.

< File for SWM-G >

Link with the API file for basic I/0 of the C++ language environment.

/*********************/

/* Name Space */

/*********************/

< Standard library file for C language >

Define this file as the location to use all APls of SWM-G.

using namespace sscApi; <
using namespace std; =

(Specification of the name space)

Define this file as the location to use the API for basic I/O of the C language

environment.
(Specification of the name space)

® Variable definition

/* 777777777777777777777777777777777 */
/* Function . _tmain */
/* Description : Main Function. */
/* _________________________________ */
int _tmain(int argc, _TCHAR* argv[])
{)) P Define the variable of the class (SSCApi) in which all APIs of SWM-G are
SSCApi sscLib; < defined
CoreMotionStatus CmStatus; <« ;
CoreMotion sscLib_cm(&sscLib); |_ Define the variable of the class (CoreMotionStatus) in which the SWM-G status
Mis defined.
Define the variable of the class (CoreMotion) in which the basic motion
controls of SWM-G are defined.
- Set the start address of the target SSCApi class simultaneously.

® Macro setting

In this project, the axis numbers and servo amplifier statuses are converted into macros.

/*******************/

/* Macro */

/**************k****/

#define AXIS_0 0

#define AXIS_1 1 P
#define SERVO_OFF 0

Define the axis number and servo status as a macro.

#define SERVO_ON 1

® Device generation and network connection

printf("Program Start¥n");
Sleep(1000) <

P

Function (printf) to output (Program Start) to the

<

// Create devices.

// Set Device Name.

sscLib.CreateDevice("C:¥¥Program Files¥¥MotionSoftware¥¥SWM-G¥¥",
DeviceType::DeviceTypeNormal,INFINITE); 4—L

sscLib.SetDeviceName("MotorControl"); <&

// Start Communication.
sscLib.StartCommunication(INFINITE);, <

L

console screen.

Wait for 1000 ms.

i

CreateDevice function
- To the first argument, pass the absolute path
of the directory including the SWM-G engine
file (SWM-GEngine.rtss).

-|Name the device "MotorControl".

Start the communication with the servo network.
- Argument INFINITE: Infinite loop
- When specifying the time until the
communication starts, set the time (unit: ms) in

Servo ON

// Set servo on.

while (true)

{

sscLib_cm.axisControl->SetServoOn(AXIS_0, SERVO_ON); 4

sscLib_cm.GetStatus(&CmStatus);

the argument.

l-|Axis 1 servo ON set

Wait for the

- The condition ends once servo ON is confirmed.

transition to servo ON.

if (CmStatus.axesStatus[1].servoOn) |
{
break;
}
Sleep(100); <
}
Servo OFF

// Set servo off.

while (true)

{

{
break;

}

sscLib_cm.GetStatus(&CmStatus);
if ({CmStatus.axesStatus[AXIS_0].servoOn) <

Wait for 100 ms.

sscLib_cm.axisControl->SetServoOn(AXIS_0, SERVO_OFF); <l'|Axis 0 servo

OFF set |

Wait for the transition to servo OFF.
- The condition ends once servo OFF is confirmed.

!Wait for 100

Sleep(100); <

ms.

Home position return

// Homing.

Config:HomeParam homeParam; <
sscLib_cm.config->GetHomeParam(AXIS_O, &homeParam);, <
homeParam.homeType = Config:HomeType::CurrentPos;

sscLib_cm.config->SetHomeParam(AXIS_0, & homeParam);
sscLib_cm.home->StartHome(AXIS_0); <
sscLib_cm.motion->Wait(AXIS_0); <

IVariabIe definition

r—

—

-|Read the home position return of axis 0.

P —

Home type: CurrentPos
- A method in which the current feedback position
at the start of home position return is used as the
home position.

ISet the home position return parameter of axis 0. |

|
|Execute the home position return of axis 0. |

IWait for completion.

® \arious motion controls

Define the variable of the data class for positioning operation.

S — 4 - "= Motion:PosCommand()" initializes the internal data of
// Create a command value. the class.
/=== m oo

|| Specify the acceleration/deceleration methods.

Motion::PosCommand posCommand = Motion::PosCommand(); . .
Trapezoidal: Trapezoidal curve

posCommand.profile.type = ProfileType::Trapezoidal; <

posCommand.axis = AXIS_0; < iCorresponding axis: Axis 0 |
posCommand.target = 17000000; <

posCommand.profile.velocity = 100000; < |—-|M0vement amount (unit: pulse) |
posCommand.profile.acc = 1000000; P

posCommand.profile.dec = 1000000; - Ispeed (unit: rpm) |

[[mmmmm IAcc: Acceleration, Dec: Deceleration (unit: U/s2)
// Execute command to move from current position to specified position.

//"'. ___________ ST Execute the motion.
sscLib_cm.motion->StartMov(&posCommand); < StartMov: Relative position command,
Y StartPos: Absolute position command
// Wait until the axis moves to the target position and stops.

Y

sscLib_cm.motion->Wait(AXIS_0); Wait for the end of the motion.

® Network disconnection

// Stop Communication.
sscLib.StopCommunication(INFINITE); 4_‘ Stop the communication with the servo network.

® Device closing and memory allocation

//close device. Close the device.
sscLib.CloseDevice(); < - To stop the SWM-G engine, release the device by

printf("Program End¥n”); 4_l calling the CloseDevice function.
Sleep(3000); | A function (printf) to output (Program End)
return0; < |_

} -|Wait for 3000 ms.

Define the application processing statements.
+ Required syntax < tmain to return >

Revision

- August 2024 First edition

